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Abstract. The ground states of a quenched random king spin system with variable 
concentration of mixed nearest-neighbour exchange couplings iJ on a square lattice 
(frustration model) are studied by a new method of graph theory. The search for ground 
states is mapped into the problem of perfect matching of minimum weight in the graph of 
frustrated plaquettes, a problem which can be solved by the algorithm of Edmonds. A 
pedestrian presentation of this elaborated algorithm is given with a discussion of the 
condition of validity. 

The simulation of finite square lattices of variable size from 10 x 10 up to 22 x 22 and 
various concentrations x ranging from 0.1 to 0.3 is performed. The main results are a new 
determination of the threshold of disappearance of ferromagnetism x *  = 0.145, the prob- 
ability of occurrence of a fracture line through the samples, the fraction of spins inside the 
connected components measuring the looseness of ground states and the average 
magnetisation as a function of x .  

In contrast to the standard relaxation methods often used in this context, it is emphasised 
that this method is the only one which can generate the exact ground states of the frustration 
model in a reasonable amount of computing time. 

1. Introduction 

The problem of spin glasses is of growing interest both in solid state physics and in 
statistical physics. This problem first emerged from the observed properties of dilute 
magnetic alloys, such as 1% of Mn or Fe embedded in Cu or Au. The most striking 
property of these systems is the cusp in the magnetic susceptibility at a well defined 
temperature (at least for the low-frequency measurement) but an absence of a peak in 
the specific heat and only a broad maximum at another temperature. From this 
behaviour, the question of a new phase transition at low temperature arose; this would 
be distinct both from the disordered high-temperature paramagnetic phase and from 
the well ordered ferromagnetic phase. 

In these alloys, two spins of the magnetic atoms Si and Sj are coupled via the 
Ruderman-Kittel-Kasuya-Yosida interaction J(r i j )S iSj ,  in which J ( r i j )  varies as 
cos (2k~r~~) / r ;  where rij is the distance between the impurities and kF is the Fermi 
wavevector of the conduction electrons (kFri j  >> 1). 
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These oscillations show that the sign of J can be positive or negative depending on 
rij. When the magnetic impurities are randomly distributed in the lattice of the metal, 
one expects a great variety of different interactions between spins. The distribution of 
spins, p ( J ) ,  is centred at J = 0 and is symmetric in J. 

The first step in modelling this problem is to substitute for the alloy a regular lattice 
of spins with random interaction. Each bond of the lattice of spins corresponds to a 
value of J which is chosen at random from the probability distribution p ( J ) .  But when 
the lattice is built, the value of each bond is fixed and there is no possibility of changing 
it: this corresponds precisely to the quenched problem of spin glasses. 

The second step towards a simple model is to use king spins S, for which values can 
be only *l. Only a very simple lattice, the square lattice in two dimensions, will be 
considered here. Finally, it is assumed that the interaction can have only two sym- 
metrical values *J, the density of -J bonds being x and that for +J being 1 - x. Then 
the distribution function has only two values p (J’) = xS (J’ + J) + (1 - x ) S ( J ’  - J). This is 
the *J model, or frustration model, which will be studied in this paper. It is believed 
that despite its strong simplifications, this model retains the relevant features of real 
spin glasses. 

This model, as well as models with a continuous distribution of J,  has been studied 
analytically by various approximate methods. The first attempt to calculate a partition 
function in the framework of the mean-field approximation was performed by Edwards 
and Anderson (1975), who concluded that there is a non-zero order parameter below a 
critical temperature. This order parameter, contrasting with the standard theory of 
phase transitions, is purely local and describes the freezing of the spins in their own local 
direction below T g .  This theory raised for the first time the problem of a phase 
transition in a spin glass system and prompted a large response from theoreticians. But 
the approximation used-the replica method-has been controversial and, despite 
various other methods of approximation used in this context, there is no firm evidence 
today of the occurrence of a phase transition, except perhaps in a special model of 
infinite range of interaction (Sherrington and Kirkpatrick 1975). 

As the situation is so open, with no results firmly established, we turned towards this 
very simplified model in the hope that any progress towards comprehension here might 
help in the understanding of more realistic situations. 

This article is devoted to the study of ground states of the frustration model (i.e. at 
T = 0, but when x varies from x = 0 (ferromagnetic ground state) to x = 0.5 (the spin 
glass ground state), the phase diagram being symmetric around x = 0.5). Particular 
attention will be paid to the threshold x* above which the ferromagnetism disappears. 
The determination of this value, together with the characterisation of ground states in 
terms of clusters of solidary spins (clusters of spins which can be reversed simul- 
taneously without any cost in energy) and of defect lines or fractures (which run from 
one side to the other of a finite sample permitting the spins of a large portion of the 
sample to be reversed), are the objectives of this work. 

These objectives have been tentatively pursued recently by the well known Monte- 
Carlo relaxation method (see, e.g., the review article by Binder (1978)). A Monte- 
Carlo step consists of choosing a spin at random, calculating the energy change P E  
associated with flipping this spin and flipping the spin with probability 1 if AE < 0 or 
with probability exp(-E/kBT) if A E  2 0. Recently, however, it has been realised (see, 
e.g., Bray and Moore 1977, Stauffer and Binder 1978) that the Monte-Carlo relaxation 
can give neither the thermodynamic equilibrium states nor the ground states for the spin 
glass model. The difficulties of these relaxation models dwell in the high potential 
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barrier and the high degeneracy which appears in some cases at low temperatures, when 
the spins are requested to flip (Rammal et al 1979). The algorithm used here is not 
relaxational and overcomes such difficulties; it permits the generation of the ground 
states in a relatively short computational time. It is therefore very well suited to this 
problem and is more efficient than all other known methods. 

The starting point of the method is to be found in the paper by Toulouse (1977). It is 
shown that the property of local gauge invariance leads to the definition of frustrated 
plaquettes in the *.T Ising model as a square of spins where the number of negative 
bonds is odd on the perimeter. It is noticed that each frustrated plaquette is a source or 
sink for a set of unsatisfied bonds called elongation. ‘A ground-state configuration is 
obtained by associating the frustrated plaquettes in pairs, in such a way that the sum of 
the elongation of the pairs is minimal’. This procedure has been carried out by hand in 
further papers (Vanimenus and Toulouse 1977, Vanimenus et a1 1979) on samples of 
finite size and a determination of the threshold and ground-state energy has been 
proposed. 

The present investigation is purely computational: the accuracy of numerical results 
has been improved, particularly in the definition of the threshold, and some important 
remarks on the limitation of the method have been put forward. 

Since the method of graph matching does not seem to have been used previously in 
statistical physics, we start with a description of the algorithm in an intuitive, rather than 
rigorous, way. It is hoped that this procedure could have applications in other contexts 
in statistical physics. The reader who wants to acquire greater expertise with this 
algorithm is advised to refer to a more rigorous version (Bieche 1979). 

In § 2 the problem of finding a ground state for the spins on a square lattice is 
mapped progressively into the problem of perfect matching of minimum weight in the 
graph of frustrated plaquettes, where, as quoted previously, the weight of an edge is 
precisely defined as the chain of minimum length (elongation) between two frustrated 
plaquettes. Careful consideration is given to the conditions for validity of this mapping. 
The periodic boundary conditions so often used in this context do not fall in the domain 
of validity here, nor does the three-dimensional problem (on a simple cubic lattice, for 
instance) . 

Section 3 presents the algorithm of Edmonds (1965a, b) used for generating the 
perfect matching of minimum weight. Firstly, in order to use results of linear pro- 
gramming, a first transposition of the basic problem is performed; this shows the 
important role played by the odd subset of vertices. These odd subsets imply additional 
constraints, as shown by Edmonds, the physical meaning of which is not clear for the 
moment; however, they are essential to the strategy of the algorithm. At this stage the 
most efficient method of solving the problem consists of building the dual problem of 
the matching, by defining one pair of dual vertex variables ui and ui for each edge (i, j ) .  
Next a relation is obtained between the ui’s and the special variables of the odd subsets; 
this permits one to generate the perfect matching of minimum weight (ground state). 
The efficiency of this algorithm comes from the fact that the ‘variational problem’ is 
mapped at each step in the problem of finding a matching of maximum cardinality. 
Although the initial state is chosen by a criterion of proximity, this algorithm does not 
progress by local minimisation and reveals itself to be well suited to handling the highly 
nonlocal character of the frustration model. In contrast to the standard relaxation 
method (such as the Monte-Carlo calculations) there is no transient regime where the 
matching would progress towards the optimal solution: as the matching becomes 
perfect at the end of calculation, it is optimum at the same time. To acquire a certain 
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familiarity with this method, which is more sophisticated than the standard method used 
in the context of statistical physics, the strategy of the algorithm is illustrated for a 
simple example in the appendix. 

Section 4 is devoted to a characterisation of the spin configuration of the ground 
states. The algorithm of Edmonds permits the generation of one of the ground states, 
whose total number cannot be determined at the present state of affairs. However, it is 
relatively easy to exhibit the connected components of the graph, i.e. the subset of the 
plaquettes which are matched together in any perfect matchings of minimum weight 
(ground state). Moreover, it is easy to establish that two distinct perfect matchings M 
and M' are possible such that the symmetrical difference MAM' generates some 
alternating cycles (along the cycle the edges belong alternately to M or M ' )  of zero 
weight. On the lattice of spins these alternating cycles surround clusters of spins which 
can be reversed by going from M to M' without any cost in energy. The existence of 
these clusters of spin, as well as alternating cycles, has already been noticed (Bray et a1 
1978), and have been called clusters of solidary spins and the contour of zero energy, 
respectively. The interesting property of these clusters is that they belong to a 
connected component of the graph. This algorithm is therefore capable of producing 
the fraction of spins which belong to a connected component, a quantity which appears 
to be critical and relevant for characterising the looseness of the ground states. 

The other very critical property is the occurrence in samples of finite size of a long 
alternating cycle running from one side of the sample to the opposite one. This fracture 
line, which is the signature of the vanishing of ferromagnetism, must be found in the 
largest connected component spreading from one boundary to the opposite one (the 
'percolating' component). Such fracture lines were found by hand, using a knowledge 
of the connected components produced by the algorithm. This restricted the investiga- 
tion to a small part of the sample. 

The results of the simulation are reported in § 5 for (i) the energy of the ground state, 
Eo, as a function of x for square lattices up to size 22 x 22, (ii) the probability of 
occurrence of fracture lines as a function of x, (iii) the fraction of spins inside the 
connected components and (iv) the average magnetisation. 

The last three properties permit a determination of the critical concentration for the 
disappearance of ferromagnetism x *  = 0-145 f 0.01. It is striking that this threshold 
value coincides with the one obtained using the annealed model (in this model the bonds 
Jij are considered as internal variables, like the spins), x" = 0.1464, for which an exact 
solution exists. 

These results have been obtained on a square lattice but can be generalised without 
difficulties to any two-dimensional lattice. 

2. Frustration and matching problems 

2.1, Definitions 

In this section we show how the problem of finding the ground states in a frustrated 
network can be reduced to a perfect matching of minimum weight in the frustration 
graph. 

The most important concepts from graph theory for our purpose are those which 
deal with matching notions. Before attempting the study of matching properties of 
frustrated networks, it is useful to recall some important concepts as well as a consistent 
set of definitions and notational conventions (see Berge 1962). 
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A graph G = (V, E )  is a structure consisting of a finite set V of elements called 
vertices, and a set E of unordered pairs of vertices called edges. The degree, denoted 
d G ( o ) ,  of a vertex o is the number of edges incident to U. A cycle c in G = (V, E )  is a 
sequence of edges, of the form ( u ~ ,  oz), (02,  v 3 ) ,  . . . , ( u p ,  ox) where p is a positive 
integer. A subset M c E is said to be a matching if, in the graph GM = (V, M ) ,  the 
degree of each vertex is less than or equal to one. A vertex U is saturated by M if and 
only if d G M ( o )  = 1 (i.e. if an edge of M incident to U exists). If d G M ( o )  = 0, U is said to be 
unsaturated. A matchingM is perfect if and only if all vertices of G are saturated (i.e. M 
saturates every vertex in G). 

Given a graph G = (V, E )  and a mapping U : E  + R, called the weight function, for 
any subset M c E, we define the weight of M as 

w ( ~ ) =  @ ( e ) .  

In such a case, G is called a weighted graph. 

relative to M, by 

e s M  

With a matching in a weighted graph, we associate a new weight function U", 

if e E M  
- U @ )  if e & M .  

w"(e) = 

If M denotes a matching in G = (V, E ) ,  an alternating cycle relative to M is a simple 
cycle whose edges are alternately in M and n?' = E -M. 

In the following, we are interested in graphs of the form G = (S ,  E ) ,  where S denotes 
the locations of the spins in a lattice and E is a representation of interactions (coupling) 
between spins. Associated with G =  ( S ,  E )  is the weight function y, where ? ( e )  
represents the value of the coupling between spins i and j of e = (i ,  j ) .  

2.2. Frustration and matching 

Let us consider a graph G = ( S ,  E )  where each vertex i is assigned a spin Si = *la With 
each pair of spins Si and Si, which are the ends of the edge e = ( i ,  j )  E E, we associate an 
interaction energy of the form -JijSiS,, where Jij denotes a given real number, 
representing the intensity of interaction. For example, in the frustration problem Jij can 
be positive (ferromagnetic coupling) as well as negative (antiferromagnetic coupling). 

It is not hard to see that, for every cycle c of G containing an odd number of negative 
assigned edges, there exists no configuration of spins in c such that every edge has its 
minimum energy. In this case, the cycle c is said to be frustrated. An edge having its 
minimum energy is to be called satisfied. Thus, there is no difficulty in deducing the 
following statement. 

Theorem 1. It is possible to associate a configuration of spins with a given set of 
unsatisfied edges L if and only if every frustrated (unfrustrated) cycle in the graph has an 
odd (even) number of edges in L. We call this condition (C). 

In the following, we call a set of unsatisfied edges such that the condition ( C )  is 
fulfilled a solution (or set of frustrations). 

This weak theorem can be replaced by a stronger one. In fact, we can show (Bieche 
1979) that the condition (C) can be limited to a subset P of the family % of cycles in G 
with the following property: for every C E %, there exists a subset { p l ,  . . . , p k }  c P such 
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that C =p1Ap2A. . . h p k .  Here A is the symmetrical difference operation. The ele- 
ments of P are called plaquettes. 

Next we discuss two examples. 
(i) On a simple square network, belonging to an infinite planar square lattice, it is 

easy to see that the elementary square cycles with four edges are a P family of plaquettes 
(figure 1). 

Figure 1. Plaquettes in a planar square network. 

(ii) On a toroidal network the two cycles illustrated in figure 2 cannot be obtained 
from a symmetrical difference between elementary square cycles and have to be added 
to the P family. These new cycles introduce a supplementary difficulty which originates 
in the modification of the genus associated with the given graph. 

Therefore, we limit our reasoning to a planar finite square grid G (planar graph). 
The results established in the following can be extended without difficulty to any planar 
graph. 

Figure 2. Toroidal network corresponds to standard periodic boundary conditions: the two 
new cycles which cannot be obtained by symmetrical difference of elementary square cycles. 

The first important consequence of the planarity of the graph considered is the 
existence of a P family such that each edge belongs to exactly two plaquettes. This naive 
property plays an important role in our investigation. 

We associate with the given network the graph G' = (P, E') ,  where P is the set of 
plaquettes (i.e. vertices of G') and E' (edges of G') is the set of pairs (pl,  p 2 )  where p1 
and p 2  denote two plaquettes having a common edge on the network. G' is, in fact, a 
special representation of the dual graph associated with the network G. In particular, 
there is a bijection between the edges of G' and those of G (figure 3). 

For a given realisation of the interactions J l j  on G, we note that F is the set of vertices 
of G' corresponding to frustrated plaquettes. If we denote the number of elements in F 
by IFl, it is easy to see that IF1 can be assumed to be even. In fact, in all cases we can add 
an appropriate frustrated cycle, without any modification to the problem, and obtain in 



Frustration model by graph matching method 2559 

I 
I 

I I 

I 

Figure 3. Correspondence between the edges of G‘ and those of G: G corresponds to 
{0, -} while G’ corresponds to (0, - - - -}. 

this way an even value for IFl. With these prescriptions, each edge (pl ,  p 2 )  in G’ has an 
assigned weight 6(pl ,  p 2 )  which is the amplitude of the interaction represented by the 
common edge to p1 and p 2  in G. 

Given a spin configuration 9 in G, we define the graph G’(9)  = (P, 9’) where 9’ is 
the set of edges in G’ associated with the solution 9. 9’ is simply the set of dual edges of 
the elements in 9. 

To characterise a solution 9, we can show the following result. A set of edges-9 in G 
yields a solution if and only if dG8(&) is odd for every fc F and dG,(&) is even for 
every p E P - F. The weight of this solution 9 is by definition 

6 ( 9 ) =  S(e). 
e o 8  

This statement means simply that every configuration of spins, minimising the total 
energy, corresponds to a solution of minimum weight. In such a solution some 
conditions are imposed on the degrees of the elements in G’. A simple consequence is 
that in G’(9),  where 9 is a solution, there is no cycle. As a matter of fact, if one cycle is 
present, the subtraction of this cycle from 9 leads to a better solution satisfying both the 
previous conditions. 

From the above statement, we deduce a more precise characterisation of the 
solution 9. 

Theorem 2 (Bieche 1979). Given a solution 9 of minimum weight, there exists a 
partition of edges in G’(9)  into $IF1 chains, each connecting two vertices belonging to F 
and having no common edge. 

Corollary. Any solution of minimum weight is given by a perfect matching of minimum 
weight in the graph K = (F, F x F ) .  The weight w ( f 1 ,  f2) of the edge (fl, f2) is simply the 
weight of the minimum-weighted chain connecting fl with fi in G’. 

Proof. Following theorem 2, each solution of minimum weight gives rise to a perfect 
matching in K, where the weight is nothing other than the total sum of minimum- 
weighted chains. On the other hand, each minimum-weight perfect matching in K 
yields a set of chains and then a solution of the same weight. 
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Note here that a perfect matching is possible in all cases because of the assumption 
of IF1 being even. A minimum-weighted perfect matching can give more than one 
solution of minimum weight. This is the case when at least one edge (fl ,  fi) exists in the 
matching with more than one minimum-weighted chain in G‘. 

To conclude this section, we recall the main result established above. The deter- 
mination of ground states in a frustrated planar network is equivalent to the problem of 
finding a minimum-weighted perfect matching in an appropriate graph. The definition 
of the weight function is given by the interactions Jii assigned to the edges of the 
network. This conclusion is the starting point of the next section, where we show how to 
find a minimum-weighted perfect matching. 

3. A minimum-weighted perfect matching by Edmonds’ algorithm 

The theory and algorithmic techniques of matching problems have been studied in 
detail by specialists of graph theory. Historically, this problem was first solved for 
bipartite graphs, and only recently for non-bipartite graphs. The case of bipartite 
graphs provides some conceptual simplification, due to the absence of odd cycles, and 
‘blossoms’ as shown by Edmonds (1965a,b). The presence of ‘blossoms’ involved in 
finding the matching provides a great complication, and a proper treatment is needed in 
this case. 

In this section, we do not attempt a detailed study of this problem. Readers 
unfamiliar with notions exposed here can consult appropriate references (Lawler 1976, 
Nemhauser and Garfinkel 1972). Our purpose is only to illustrate essential ingredients 
in Edmonds’ algorithm. For this purpose, we show how this algorithm works by using 
some illustrative examples at each stage. 

Without loss of generality, we limit our investigations to the case JI, = *l. The 
general case with another distribution J:, can be dealt with according to the same 
procedure. 

The graph considered here has a set of vertices, the frustrated plaquettes. We 
denote this set by V. Edges are the elements of V x V = E. Given the assumption 
JI, = f 1, the weights associated with edges in V x V are simply the distances between 
plaquettes (the Manhattan metric). 

With each edge e = ( i ,  j )  in this graph, we associate a real number x,,, having the 
value one if e belongs to the matching and zero otherwise. 

Let W,, be the weight assigned to the edge e = (i, j ) .  The problem (Pl)  of the search 
for minimum-weighted perfect matching can be formulated as follows. 

(PI) xij E {0,11 for every edge (ij) 

1 xjj = 1 
i 

1 xijwij = W ( { x } )  

for every vertex i E V 

to be minimised. 
(ii) 

(Pl)  is then trivially an integer linear programming problem with variable xji  and I VI 
constraints. 

In this form, the condition x i j  E{O, 1) for every edge (ij) makes this problem (Pl)  
intractable. If we relax this condition by imposing only x i j  2 0, we obtain the following 
problem (P2). 
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(P2) xij s o  for every edge (ij) 

1 xjj = 1 
i 

for every vertex i E V 

1 xjjw, = W({x})  
( U )  

to be minimised. 

This simplification introduces in counterpart a complication due to the fact that in the 
optimal solution of (P2), xjj can be non-integer. In fact, we can obtain xii = 0 , l  or $. In 
this case, edges affected with weight 1 are necessarily disjoint odd cycles. Moreover, in 
the general case, optimal solutions of (P2) are not optimal solutions for (Pl)  (see 
Nemhauser and Garfinkel 1972, p 85). In figure 4 we show an example illustrating such 
situations. Therefore the relaxation of the restriction xji E (0 ,  1) implies the necessity to 
consider with caution the family of odd subsets S of V. 

p7q 1 1 

Id 

112 M2 112 li2 

IC 1 

Figure 4. Example showing the importance of odd sets. ( a )  Graph with weighted edges; ( b )  
solution of problem (P2), with non-integer xii, W = 3; ( c )  the exact solution for (Pl) ,  with, 
w=4. 

An elegant solution to this problem has been derived by Edmonds taking into 
account the odd subsets of V. Briefly, Edmonds’ approach consists of adding a new 
constraint associated with S.  More precisely, Edmonds shows that the problem of 
finding a minimum-weighted perfect matching (i.e. problem (Pl))  is equivalent to the 
following linear programming problem (P3). 

(P3) xij 3 0 for every edge (ij) 

for every vertex i 1 xjj = 1 
i 

1 xij sz $(IS1 - 1) for every odd subset S of V (C3) 
( i i ) s E ( S )  

1 XijWi, W({xI) to be minimised. (C4) 
(I/) 

Here E ( S )  denotes the set of edges having its end in S,  i.e. E ( S )  = {(ij) E E 1 i E S,  j E S }  
and /SI is the cardinality of S.  

From Edmonds’ papers (1965a, b), the problem (P3) yields an integer basic so1ut:on 
xi,  = 0 or 1 for any given set of edge weights { Wi}. Note here that the complications due 
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to S cannot exist in bipartite graphs (i.e. graphs without odd cycles). In the frustration 
problem, the physical significance of this aspect is not clear. 

The transposition of (Pl)  into (P3) is the key in the construction of minimum- 
weighted perfect matching. 

3.1. Linear programming formulation of the minimum-weighted matching problem 

To our knowledge, the most efficient procedure for solving problem (P3) is based on the 
duality theory in linear programming (Dantzig 1962). The basic idea of duality is that 
every linear programming problem is associated with another problem, called its dual, 
and that both problems bear such a close relationship that whenever one is solved, the 
other problem is in fact solved as well. In this context, (P3) is the primal problem. 

The dual 6f the linear programming problem (P3) above is (D3). 

(D3) Z s < O  for every odd subset of V 

for every edge (ii) E E 

(W 
(C6) 

(ui is a real number for every vertex i EN)  

1 ui + C ;CIS\ - 1 ) ~ s  3 T({uI, {zI) is to be minimised. (C7) 
i o V  { S }  

Here ui and Zs are identified with vertex i and the odd subset S. 

the following criterion for the optimality of primal and dual solutions. 
Using the weak theorem of complementary slackness (Dantzig 1962), we can derive 

Optimality criterion. If M is a perfect matching such that for every edge (ij) E M 

and for every S such that Zs < 0, we have 

then M has the minimum weight. Note that the inverse of this theorem is true. In other 
terms, M yields a minimum-weighted perfect matching if and only if there exist two 
mappings U and 2 such that conditions (C5), (C6), (C8) and (C9) are satisfied. This 
remark is very useful, as shown in the next section. 

With this optimality criterion, we are now in a position to give the principle of the 
algorithm used through the next sections. In the appendix, we show with two examples 
how this algorithm works, illustrating the difficulties encountered during the compu- 
tations. 

3.2. Summary of the minimum-weighted perfect matching algorithm 

(0) Start with a set of values ui and Zs according to conditions (C5) and (C6). By 
example, we can choose initially ui = 4 mini W ,  for every vertex i and Zs = 0 for every S.  

(1) We retain in G all edges satisfying conditions (C8) and (C9). In this way, we 
obtain a new graph denoted by c. In the sequel we call the equality graph. 
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(2) In d, we find a matching of maximum cardinality such that the condition (C9) is 
satisfied. 

(3) If the matching obtained is perfect, then this matching and the dual solution are 
optimal and we can stop. Otherwise, we modify the variables { U }  and { Z }  to increase C? 
(i.e. add new edges), without any violation of conditions (C5), (C6), (C8) and (C9). We 
then return to step (2). 
The implementation of the algorithm outlined above is illustrated with more details in 
the appendix. To end this section, it is interesting to make some remarks concerning 
this algorithm. 

( a )  Firstly, the complexity of this algorithm is polynomial: the original algorithm of 
Edmonds works in O(l VI4) operations and the best known works in O(l VI3) (Lawler 
1976). 

( b )  In contrast to techniques used previously in the frustration problem, the 
algorithm used here is not based on a relaxation method. Moreover, there is no 
transient solution. The algorithm leads up to an optimal solution, i.e. a ground state in a 
frustrated network. 

( c )  The computational procedure maintains primal and dual aspects at all times. In 
this sense this algorithm can be called dual-primal. Step (2) corresponds to the primal 
problem (P3), while step (3) corresponds to the dual problem (D3). 

( d )  In step (0) ,  the special choice of initial values { U }  and { Z }  gives a ‘proximity’ 
character to C?, ui means, at the initial step, a kind of ‘action radius’. Later (steps (2) 
and (3)) d is considerably modified, and a sequence of different matchings is thus 
obtained. 

( e )  Finally, it is interesting to make some comparisons between the dual-primal 
algorithm described above and the primal-dual one. In the first case, the algorithm 
yields different unperfect matchings during the dourse of the computation and the 
perfect minimum-weighted matching is obtained only in the last step. Then we start 
with a dual solution, and we obtain a primal solution. 

In contrast to this procedure, the primal-dual algorithm starts with a given perfect 
matching, and progresses by improving this solution. This procedure seems to be 
analogous at first sight to the spirit of the relaxation techniques. But, in contrast to 
standard relaxation procedures, which fail to give ground states, the primal-dual 
algorithm yields a matching of minimum weight, i.e. ground states. 

3.3. Practical implementation 

The first algorithm we have implemented was the original one of Edmonds, because it 
needs much less memory storage than Lawler’s one. The solving time on a 22 X 22 
sample (at 15% of negative interactions) was about 20 s on an IBM 360-67. 

A primal version of this algorithm, working on sample family, takes 150 s to solve 30 
lattices 22x22 with 0*1OsxsO.18.  In practice, it turns out that the likelihood of 
matching two plaquettes distant by more than five was null. We use this property to 
accelerate running and save storage by considering only the edges of K for which the 
weights are less than or equal to five. 

4. Spin clustering 

The occurrence of more than one chain between two frustrated plaquettes (see D 1) is 
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the cause of the multiplicity of solutions. In order to be more precise, let us consider in 
the case Jii = *l two minimum-weighted perfect matchings M and MI. For each of 
these two matchings two precise configurations of spins exist. 

Let MAM' be the symmetric difference between M and M'.  It is clear that the edges 
in MAM' belong to alternating cycles of null weight relative to M and M'.  

If we draw these cycles on the grid, we obtain a set of spin clusters surrounded by null 
cycles with the following property: by passing from M to M ' ,  each cluster is reversed in 
a coherent way. It follows immediately that all ground states in a frustrated network can 
be generated by reversing spin clusters delimited by null cycles. 

This procedure yields all ground states, and leads to an estimation of the degeneracy 
of these states in the frustration problem (figure 5). 

Figure 5. Alterriating cycle obtained from two matchings, with spin configurations. The 
cluster of solidary spins is surrounded by the alternating cycle of asterisks and broken lines. 

In this section we shall examine these spin packets in more detail, and we propose to 
describe a method yielding some information about the degeneracy of the ground 
states. This procedure can be used (see the following section) to give a description of the 
behaviour of spins in the ground states. 

Let K = (F, F x F ) ,  the graph of frustrated plaquettes. We denote by A" the subset 
of edges in K, inside a minimum-weighted perfect matching. Let K" be the graph 
(K, A*) .  If we draw K* on the network G, replacing each edge by the shortest chain in 
G', we then see thai each null cycle surrounds a spin packet. Moreover, the maximal set 
o f  spins surrounded by connected components of  K* contains the union of all spins that 
can be contained in a spin packet. It is possible to have more than one null cycle inside a 
connected component, but spins which are outside the set of connected components 
cannot be contained in a spin packet. In fact, there would otherwise exist a null cycle 
surrounding these spins, and then they would belong to a connected component. 

It is easy to find an efficient procedure of polynomial complexity yielding the set A". 
We limit ourselves in this paper to the computation of a larger set A' containing A*,  
using a simple algorithm described below. This algorithm is a subproduct of Edmonds' 
algorithm, and yields an efficient method for searching eventual fracture lines in the 
frustration problem (see § 5 ) .  

Let e* = (F, E*),  the last equality graph given by Edmonds' algorithm. We denote 
by (U,  2)  the last solution of the dual problem (D3). 

Using the remark quoted in 5 3 concerning the optimality criterion we can show that 
a perfect matching in G is of minimum weight if and only if it implies a perfect matching 
in e for which (C9) is satisfied. It also follows that A* is none other than the set of edges 
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contained in alternating cycles relative to a given matching M. Each of these cycles has 
zero or one edge outside M, and only one end in each odd subset S for which 2, < 0. 

The set A’ c A* has been obtained by deleting in d only the edges which are not 
contained in an alternating cycle. In this way, we add to alternating cycles some edges as 
shown in figure 6. 

Figure 6.  Construction of the set A* from d, with the blossom marked by a broken curve. 

In order to obtain A’, the following algorithm has been used for each vertex f in G* 

(1) Let C ( f )  be the connected component of ( F - { f } ,  ET) containing the vertex 

(2) Delete in d* all edges which are of the form (f, f ’ ) ,  where f’ is not a vertex of 

which is an articulation point?. 

connected to f by the matching M. 

C(f). 
Here E * ( f )  is the set of edges in E not incident to f .  

The computation of A‘ with this procedure yiel’ds two pieces of information. First, 
we can find the fraction of spins which is embedded in at least one spin packet. In fact, 
such spins are surrounded by the connected components. In the second place, A’ gives 
the eventual fracture lines in the sample. In fact, the edges of such a line certainly 
belong to a ‘percolating’ connected component. It also follows that the search for this 
line is confined in this ‘percolating’ component (see § 6). 

In the next section, we discuss the direct relationship between the fraction of spins in 
clusters and the probability for the existence of fracture lines. Finally, the search for all 
clusters, and also the degeneracy of the ground states, is a very difficult problem. At the 
present time, we are unable to count the number of solutions exactly. However, the 
above procedure gives without ambiguity all the spins remaining together in all ground 
states (solidarity). 

5. Results and discussion 

5.1. The energy Eo of the ground state (per spin) 

For each concentration of negative bonds, between x = 0.10 and 0.30, the ground-state 
energy Eo (per spin) is calculated for ten different samples generated independently (as 

t A vertex of a graph is called a cut vertex or articulation if its removal results in an increase in the number of 
connected components. 
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described in the previous section). We have reproduced only the results for squares of 
size 22 x 22 spins in figure 7 .  The bars represent the standard-deviation error from the 
expectation for ten samples. This standard deviation gives a relative error of the order 
of 1.7%. 
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Eo 
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X 

Figure 7. Ground-state energy (per spin) as a function of x. Ground-state energies as 
obtained by the matching method are represented by small full circles where the bars 
represent the standard deviation for ten different samples of size N = 22 x 22. There is no 
perceptible anomaly on the curve around x *  = 0.145. The open circles correspond to the 
results of Kirkpatrick (1977) using the Monte-Carlo method on a sample of size N = 

80 X 80. The curve corresponds to the series expansion Eo(x) = -2(1-2x)- 16x3-64x4 
(Grinstein et al 1979). 

The dispersion of the data is remarkably weak. This was not the case for the 
simulation by Monte-Carlo relaxation (improved by thermal shocks) on a bigger sample 
(80 x 80). These points have been reproduced for comparison in figure 7 :  the departure 
from the ground-state values must originate from the potential barrier which prevents 
the relaxation operating towards the ground states. 

In figure 8, the same ground-state energy is plotted as a function of the concen- 
tration of frustrated plaquettes. But, as the sample was generated for a fixed value of x ,  
a fluctuation in values of C, appeared and it was necessary to present the results in the 
form of a histogram of width 0.01. An approximate linear variation of Eo with C, has 
been found which is compatible with the previous results of Vanimenus and Toulouse 
(1977). 

In figure 9, Eo has been plotted as a function of 1 / N 2 ,  the inverse of the total number 
of spins in the samples, for various concentrations. The purpose of this plot is to verify 
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Figure 8. Ground-state energy (per spin) as a function of C,: As the samples have been 
generated for fixed values of x ,  the concentration of frustrated plaquettes fluctuates to a 
large extent. All the samples are represented in a histogram of width 0.01. A linear 
regression gives Eo(C,) = -1.9147 + 1.0228CP, a variation compatible with the previous 
results of Vannimenus and Toulouse (1977). The line corresponds to the limit of large 
dilution of negative bonds: ,!?,(CO) = -2 + C,. N = 22 X 22. 
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Figure 9. Size effect on the ground-state energy, Each point corresponds to the average Of 
the ground-state energy on ten samples of variable size N x N but fixed density x .  A, 
~ = 0 ~ 3 0 ; R , x = 0 ~ 1 8 ; C , x = 0 ~ 1 6 ; D , ~ = 0 ~ 1 4 ; E , x = 0 ~ 1 2 .  
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that the size of samples, 22 x 22, which is selected for the exhibition of E,(x)  in figure 7 
is located in a range of values of 1 / N 2  where the fluctuations are rather small, in such a 
way that it reasonably represents the limit N + 03. In addition, this plot does not reveal 
any ‘abrupt’ change of regime of Eo( l /N2)  which could have been attributed to a critical 
size regarding a characteristic coherence length. 

For a dilute concentration, x - 0, it is possible to establish an expansion in x :  
Eo(x )  = -2+4x - 16x2-64x4 (Grinstein et a1 1979), which is represented by the full 
curve in figure 7 .  From this general behaviour of Eo(x ) ,  no singularity of any order can 
be deduced from the data. The temporary conclusion is that the ground-state energy 
E,(x) is not a relevant function of the phase transition at the threshold of disappearance 
of ferromagnetism. 

5.2. Probability of occurrence of a fracture line 

The fracture line has been defined in § 4 as the longest alternating cycle running through 
the sample from one side to the opposite one. This fracture line permits the reversal of 
the spins in the left part of the sample when the right part is fixed, for instance: it is the 
sign of breaking the long-range order of the ferromagnetism phase. The study of this 
fracture line has been made by hand in the largest connected component (‘percolating’ 
component). For each concentration x,  the line has been searchCd for in the ten samples 
and the probability of occurrence P ( x )  is defined as the ratio of the number of fractured 
samples divided by ten. The results are exhibited in figure 10; P ( x )  is exfiected from an 
infinite sample to be a step function defining unambiguously the critical concentration 
x* for the disappearance of ferromagnetism. The finite-size simulation is obviously 
rounded, but the data show an abrupt variation near 0.145. This feature is magnified on 
the inset to figure 10, where the rate of variation of this probability (derivative dP/dx) 
with x is plotted. The critical value x* is therefore in the range 0.14 < x* < 0.15, which 
corresponds to a new determination of x (the previous determinations were 0.15 < x* < 
0.20 (Kirkpatrick 1977), x* = 0.15 (Ono 1976) and x* 2: 0.10 (Vanimenus eta1 1979)). 
The present study therefore improves the accuracy of x*. This value is discussed briefly 
in the following section. 

5.3. Fraction of spins inside the connected components 

The connected components refer to subsets of plaquettes which are matched together in 
any perfect matching of the graph. These components are surrounded by alternating 
cycles: they correspond to clusters of solidary spins, the reversed state of which has the 
same energy as the initial state. At  low concentrations of negative bonds the largest 
connected component is considered as the reference state, which is assumed to be rigid, 
for instance, by fixing the spins ontheoutside perimeter of the sample. By increasing x,  
the largest component is still assumed to be the rigid reference state and is not taken into 
account in the fraction of spins in a cluster. This fraction, F ( x ) ,  gives a strong indication 
of the looseness of the spins in the ground states. In this context of Bray et a1 (1978), 
beyond the threshold each spin belongs to a finite cluster in such a way that F ( x )  = 1 for 
x > x*. 

The present definition of the cluster of spins must be distinguished from the concept 
of the packets of solidary spins as introduced by Vanimenus et a1 (1979). The packet of 
solidary spins is defined as a group of spins that always keep the same relative 
orientation. These packets have a correlation equal to 1 at T = 0, and they provide a 
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Figure 10. Probability of occurrence of a fracture line. The fracture line-alternating cycle 
running from one side of the sample to the opposite-is searched for on each set of ten 
samples corresponding to a fixed x. P(x) is defined as the ratio of fractured samples divided 
by ten. The continuous line is only a guide to the eye. The insert represents the rate of 
increase dP/dx which exhibits a peak at x* = 0.145, the threshold for the disappearance of 
ferromagnetism. N = 22 x 22. 

measurement of the rigidity in the ground states. Therefore, the fraction of spins which 
belong to at least one packet is a decreasing function of x from 1 at x = 0, in contrast to 
F ( x ) .  There the solidarity of spins is a measurement of the rigidity, while here it is 
related to the looseness of the groundstates. 

From the algorithm it is possible to determine the total number of spins in the 
connected component. This number, averaged over the ten samples and divided by the 
total number of spins, is by definition the fraction of spins inside the connected 
components F ( x ) .  F ( x )  against x has been plotted in figure 11 for the biggest sample, 
N = 22 ~ 2 2 .  

The data exhibit a steep variation near x = 0.14-0.15. The derivative of this curve is 
shown in the inset, and reveals a sharp peak at x *  = 0.145 which is the same value as 
determined by the previous curve, figure 10. Both properties-the probability of 
occurrence of fracture lines and the fraction of spins-must be considered as relevant 
variables for the phase transition between the ferromagnetic and the ‘spin glass’ phases 
(it can be noticed, however, that it is easier to obtain F ( x )  than P ( x ) ) .  

5.4. Magnetisation 

The magnetisation M ( x )  is defined as the difference between the number of spins in the 
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Figure 11. Fraction of spins in the connected components. The connected components of 
the graph describe the clusters of solidary spins which can be reversed without cost in 
energy. The more spins there are in these clusters, the more loose are the ground states. For 
each x ,  the average number of spins belonging to these components is counted (over ten 
samples), except those of the largest component, which are taken as rigid, and the fraction 
F ( x )  is the ratio of this average number over the total number of spins. The full curve is only 
a guide to the eye. The insert represents the rate of increase dF/dx which is strongly peaked 
at x *  = 0.145, a value considered consequently as the threshold for the disappearance of 
ferromagnetism. N = 22 x 22. 

two states. For a fixed reference direction of the spins (k or up to down) M ( x )  can be 
positive or negative. However, only the absolute value of M ( x )  can be studied when a 
comparison or an average between different samples is performed and (IM(x)l) is 
obtained. The expectation value of the absolute value of the magnetisation for ten 
samples of fixed concentration and size is plotted in figure 12. It must be realised that 
this averaging procedure is only partial in the sense that, for a fixed sample, the 
magnetisation must also be averaged for all the ground states. But this cannot be done 
sinc'e the algorithm cannot generate the total number of ground states. The sample 
averaging is probably a good approximation of the correct expectation value of the 
magnetisation for small x ( ~ 0 . 1 )  in the ferromagnetism phase, where both the 
degeneracy and the fluctuation of the magnetisation are weak (few small packets). But 
for larger values of x ,  particularly near and above the threshold, this (lM(xj1) is largely 
overestimated. In this case, the ground states are numerous and their magnetisation 
fluctuates not only in intensity but also in sign for fixed spin reference, leading to an 
expectation value ( M ( x ) )  = 0 above the threshold. For this reason, we believe that the 
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Figure 12. Magnetisation. The absolute value of the magnetisation (per spin) is averaged 
over ten samples of fixed x to give (IM(x)l). For each size the results are represented by 
triangles, full circles and squares for N = 18 x 18,20 x 20 and 22 x 22 respectively. Due to 
the fact that only the absolute value is meaningful for comparison between different 
samples, (lM(x)l) is overestimated above x *  where (IM(x)l) must be well in the limit N -+ o[). 

data are meaningful below x *  but largely overestimated above x * .  Despite this 
difficulty, the curves shown in figure 12 exhibit an abrupt decrease of ( M ( x ) )  near x * .  
This decrease is amplified for the largest sample, N = 22 x 22, as expected. 

6.  Conclusion 

Edmonds' algorithm-perfect matching of minimum weight-has been applied to the 
frustration model in order to obtain the ground states of a spin glass. As compared with 
other numerical methods of relaxation, the advantage of this algorithm is to generate 
the true ground states for samples of finite size. The main result of this study is the 
determination of the threshold for the disappearance of ferromagnetism for the critical 
concentration of negative bonds x *  = 0,145 f 0.01. We have no physical explanation of 
this value, but it might be compared with the critical value of the annealed model of 
frustration. By the annealed model, we mean a model where all pair interactions Jij 
between neighbouring spins are considered as internal variables, like the spin variables, 
with the constraint of a fixed value for the density of negative bonds. It has been shown 
(Thorpe and Beeman 1976) that this annealed *J  square lattice model has an exact 
solution which can be mapped into the Onsager solution of the regular spin lattice, but 
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with an effective interaction depending on the distribution of negative interactions as 
well as on the temperature. An implicit equation for this effective interaction can be 
written at T = 0; the solution of this is, in the *J model, simply x *  = $-aJT= 0.1464. It 
is remarkable that this value falls in the range of the present determination and raises 
the question of the possible coincidence of the threshold between the annealed and 
quenched models of frustration. We have not found any symmetry argument, from 
duality for instance, on the square lattice which could justify this identity of thresholds. 
In this context it can be recalled that for dilute Ising systems in a square lattice-the 
model where a density x of bonds is such that J = 0-the threshold of the annealed 
model is x c  = 0.5, the same as the one for the bond percolation problem considered as 
the quenched model of the dilute Ising problem. However, for a triangular lattice of 
dilute Ising systems the threshold is 0.3522 for the annealed model instead of 0.3473 
for the quenched one (or bond percolation problem). The possibility of a threshold for 
the quenched iJ model slightly below but different from the annealed model one 
(0,1464) cannot be eliminated. 

Another important result of this study is the occurrence of fracture lines, a signature 
of the disappearance of the long-range order of ferromagnetism. This occurrence 
above x *  is accompanied by the clustering of solidary spins in packets in the sample, 
which reflects the looseness of ground states. This phenomenon could be very general 
in this type of disordered systems (Toulouse 1979)-three dimensions, Heisenberg 
spins, p ( J )  continuous-and can be understood as a characteristic size for screening the 
strong but competing interaction between spins. If these packets do not overlap in such 
a way that they realise a partition of the spin systems, the problem of phase transition 
would have been solved in a negative way: no phase transition can occur for indepen- 
dent and finite packets of solidary spins (in thermodynamic equilibrium). But the 
overlapping of packets prohibits such a simple conclusion! 

To our knowledge, this is the first time that this algorithm has been applied to a 
physical problem. One wonders if other models can be formulated in terms of matching 
problems. The dimer problem-pairing two-neighbour sites on a lattice-is obviously a 
perfect matching problem, but the interest here is the enumeration of states which 
cannot be treated directly by this algorithm which generates a perfect matching of 
minimum weight. 

Appendix. Two illustrative examples 

The purpose of this appendix is to show how the algorithm described in 0 4 works. For 
this, we shall consider two cases of minimum-weighted perfect matching. The first is 
related to bipartite graphs, the second to non-bipartite graphs. In order to understand 
this procedure, it is profitable for the reader to consider these examples as exercises. 

A. 1. Bipartite graphs 

Let us consider the bipartite graph shown in figure 13(a), where the vertices are 
numbered 1, 2, 3 , .  . . ,8 ,  and different edge weights are indicated. 

A.1.1. Initialisation of the values ui and construction of c (steps (0) and (1)). Applying 
steps (0) and (l), we obtain the graph c shown in figure 13(b). It is interesting here to 
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note the absence of odd subsets, S. Therefore Zs = 0 at all times during the course of 
the computation. 

A.1.2. Research of a maximum cardinality matching in (step (2)). For this, we apply 
one of standard algorithms, given such matching (Lawler 1976). For example, we can 
use the following procedure (labelling algorithm). 

Let M be any matching in c, possibly the empty matching. No vertices are 
labelled. 
Give the label (+, 0) to each exposed (unsaturated) vertex. 
If there are no unscanned, labelled vertices, stop. Otherwise, if there exists a 
vertex i labelled +, and unscanned, go to ( 3 )  for scanning. Otherwise, find a 
vertex j ,  labelled -, unscanned, and go to (4) for scanning. 
For each vertex jwdjacent to i, with an edge outside M, then give the label (-, i )  
to j if j is unlabelled or, if j is labelled +, an augmenting alternating chain is 
detected and go to ( 5 ) .  Go to ( 5 ) .  
Give the label (+, j )  to the vertex i, matched to j by M. Go to (2) .  
Using the labels, find the augmenting alternating chain. Increase the cardinality 
of the matching. Remove all labels from vertices. Go  to (1) .  

In the case consideredhere, initially, M is empty. In the figures, wavy lines represent 
edges in the matching M, and straight lines those which are not in M. 

Following the prescriptions above, we encounter successively the following steps. 
( a )  By scanning the label + at vertex 1 we detect the augmenting chain { ( 1 , 6 ) }  

( b )  By scanning the label + at vertex 2 we detect the augmenting chain { ( 2 , 7 ) }  

( c )  By scanning the label + at vertex 3 we give the label (-, 3 )  to vertex 6 ,  and we 

( d )  Scanning the label + at vertex 4 does not generate any new label. 
( e )  By scanning the label + at vertex 5 we give the label (-, 5 )  to the vertex 3. 

(figure 13(c)) .  

(figure 13(d)) .  

also detect the augmenting chain ( ( 3 ,  8)) (figure 13(e)) .  
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(f) By scanning the label - at vertex 3 we give the label (+, 3) to the vertex 8. 
(g) Scanning the label + at the vertex 8 does not generate any new label. 
At this stage, we obtain the matching M ={(l,  5 ) ,  (2,7), (3,8)}, which is of 

maximum cardinality in d (figure 13(f)). 
The following step is step 3 in Edmonds’ algorithm, where we change the values of 

U:. For this, we can use the last labels of the vertices in 6, and we can make U, = U, + E  

for every vertex i labelled +, and U, = U, - -E for every vertex labelled -, with E = 
min(-El, E ~ ) .  Here represents the minimum value of 
[ W ,  - (U, + U,)], where (ij) represents an edge such that i is labelled +, j is unlabelled 
and U, + U, < W,, is satisfied. eZ represents half of the minimum value of [ W,, - (U, + U,)], 
where (ij) represents an edge such that i and j are labelled + and U, + U, < W ,  is satisfied. 
In our example, = min(1, 2) = 1, eZ = min(0-75) = 0.75. Then E = 0-75, and we start 
with the new equality graph d as shown in figure 13(c). This new graph contains the 
edge (4,8), but does not contain (3,6). 

Repeating the procedure described above, we obtain a new matching of maximum 
cardinality in d (figure 13(h)). 

Now we detect an augmenting alternating chain{(4,8), (8,3),  (3,5)} and also change 
the new matching (figure 13(i)). 

The next matching M obtained is also perfect in d. From § 4, M is t,hen a perfect 
matching of minimum weight in G. Thus the procedure stops at this step, with the 
solution also obtained. The weight of M is 7. 

and e2 are defined as follows. 

A.2. Non-bipartite graph 

Let us consider the non-bipartite graph G, shown in figure 14(a), with a weight assigned 
to each edge. After the initialisation of the values ui, we obtain the graph d as shown in 
figure 14(b). M = {(1,2), (3,6)}, which represents a matching of maximum cardinality 
in d, can be chosen as the starting point (figure 14(c)). 

When we scan the label - of the vertex 1, we remark that the vertex 4 is labelled by 
(-, 3). However, this vertex can be labelled (+, 2). This conflict is the signature of the 
presence of an odd cycle. The set of vertices belonging to this cycle satisfies the equality 

Such a cycle is called ‘blossom’, and is rooted at the unsaturated vertex by an element of 
E(§) .  

In our example, we have two blossoms: B1 = (1 ,2,3)  rooted at bl = 3 and BZ = 
(4,5,6) rooted at bz  = 4 (figure 14(d)). For each vertex in a blossom, other than the 
root, we continue the labelling operation. Moreover, in the following step, each 
blossom is to be considered as only one vertex, labelled with its root label. 

The matching obtained with this prescription has the maximum cardinality. In the 
next step, we modify the dual solution (U, 2). For this we take 

Also, for each vertex i in the blossom B1, we make ui = ui + E ,  because b l  is labelled with 
the label +. Finally, we change 2 such that ZB1 = - 2 ~  from the condition (C8). 
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Figure 14. Non-bipartite graphs. 
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In a similar way, for each vertex in the blossom BZ, we make ui = ui + E ,  and 2 is 
changed such that Z,, = - 2 ~ .  Therefore, the graph 6 becomes as shown in figure 14(e). 

In 6 an augmenting chain {(3,4)} can be detected. Finally, the next matching thus 
obtained is perfect, and of minimum weight, as we can see directly (figure 14(f)). 
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